Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurotoxicology. 2012 Jun;33(3):272-9. doi: 10.1016/j.neuro.2012.01.015. Epub 2012 Feb 9.

Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity.

Author information

  • 1Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, USA.

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element, a cis-acting regulatory element that increases expression of detoxifying enzymes and antioxidant proteins. Kelch-like ECH associating protein 1 (Keap1) protein is a negative regulator of Nrf2. Previous work has shown that genetic overexpression of Nrf2 is protective in vitro and in vivo. To modulate the Nrf2-ARE system without overexpressing Nrf2, we used short interfering RNA (siRNA) directed against Keap1. Keap1 siRNA administration in primary astrocytes increased the levels of Nrf2-ARE driven genes and protected against oxidative stress. Moreover, Keap1 siRNA resulted in a persistent upregulation of the Nrf2-ARE pathway and protection against oxidative stress in primary astrocytes. Keap1 siRNA injected into the striatum was also modestly protective against MPTP-induced dopaminergic terminal damage. These data indicate that activation of endogenous intracellular levels of Nrf2 is sufficient to protect in models of oxidative stress and Parkinson's disease.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk