Remote catalyzation for direct formation of graphene layers on oxides

Nano Lett. 2012 Mar 14;12(3):1379-84. doi: 10.1021/nl204024k. Epub 2012 Feb 16.

Abstract

Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Copper / chemistry*
  • Crystallization / methods*
  • Graphite / chemistry*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Particle Size
  • Silicon Dioxide / chemistry*
  • Surface Properties

Substances

  • Macromolecular Substances
  • Silicon Dioxide
  • Graphite
  • Copper