Send to:

Choose Destination
See comment in PubMed Commons below
Arterioscler Thromb Vasc Biol. 2012 May;32(5):1236-45. doi: 10.1161/ATVBAHA.111.244525. Epub 2012 Feb 9.

NOX4 pathway as a source of selective insulin resistance and responsiveness.

Author information

  • 1Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.



Type 2 diabetes mellitus and related syndromes exhibit a deadly triad of dyslipoproteinemia, which leads to atherosclerosis; hyperglycemia, which causes microvascular disease; and hypertension. These features share a common, but unexplained, origin-namely, pathway-selective insulin resistance and responsiveness. Here, we undertook a comprehensive characterization of pathway-selective insulin resistance and responsiveness in liver and hepatocytes by examining 18 downstream targets of the insulin receptor, surveying the AKT, ERK, and NAD(P)H oxidase 4 pathways.


Injection of insulin into hyperphagic, obese type 2 diabetic db/db mice failed to inactivate hepatic protein tyrosine phosphatase gene family members, a crucial action of NAD(P)H oxidase 4 previously thought to be required for all signaling through AKT and ERK. Insulin-stimulated type 2 diabetic livers unexpectedly produced an unusual form of AKT that was phosphorylated at Thr308 (pT308), with only weak insulin-stimulated phosphorylation at Ser473. Remarkably, knockdown or inhibition of NAD(P)H oxidase 4 in cultured hepatocytes recapitulated the entire complicated pattern of pathway-selective insulin resistance and responsiveness seen in vivo-namely, monophosphorylated pT308-AKT, impaired insulin-stimulated pathways for lowering plasma lipids and glucose, but continued lipogenic pathways and robust ERK activation.


Functional disturbance of a single molecule, NAD(P)H oxidase 4, is sufficient to induce the key harmful features of deranged insulin signaling in type 2 diabetes mellitus, obesity, and other conditions associated with hyperinsulinemia and pathway-selective insulin resistance and responsiveness.

Comment in

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk