Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pharmacogenet Genomics. 2012 Apr;22(4):247-53. doi: 10.1097/FPC.0b013e32835001c9.

Merging pharmacometabolomics with pharmacogenomics using '1000 Genomes' single-nucleotide polymorphism imputation: selective serotonin reuptake inhibitor response pharmacogenomics.

Author information

  • 1Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.

Abstract

OBJECTIVE:

We set out to test the hypothesis that pharmacometabolomic data could be efficiently merged with pharmacogenomic data by single-nucleotide polymorphism (SNP) imputation of metabolomic-derived pathway data on a 'scaffolding' of genome-wide association (GWAS) SNP data to broaden and accelerate 'pharmacometabolomics-informed pharmacogenomic' studies by eliminating the need for initial genotyping and by making broader SNP association testing possible.

METHODS:

We previously genotyped 131 tag SNPs for six genes encoding enzymes in the glycine synthesis and degradation pathway using DNA from 529 depressed patients treated with citalopram/escitalopram to pursue a glycine metabolomics 'signal' associated with selective serotonine reuptake inhibitor response. We identified a significant SNP in the glycine dehydrogenase gene. Subsequently, GWAS SNP data were generated for the same patients. In this study, we compared SNP imputation within 200 kb of these same six genes with the results of the previous tag SNP strategy as a rapid strategy for merging pharmacometabolomic and pharmacogenomic data.

RESULTS:

Imputed genotype data provided greater coverage and higher resolution than did tag SNP genotyping, with a higher average genotype concordance between genotyped and imputed SNP data for '1000 Genomes' (96.4%) than HapMap 2 (93.2%) imputation. Many low P-value SNPs with novel locations within genes were observed for imputed compared with tag SNPs, thus altering the focus for subsequent functional genomic studies.

CONCLUSION:

These results indicate that the use of GWAS data to impute SNPs for genes in pathways identified by other 'omics' approaches makes it possible to rapidly and cost efficiently identify SNP markers to 'broaden' and accelerate pharmacogenomic studies.

PMID:
22322242
[PubMed - indexed for MEDLINE]
PMCID:
PMC3303952
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1
Figure 2
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins Icon for PubMed Central
    Loading ...
    Write to the Help Desk