Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(2):e31002. doi: 10.1371/journal.pone.0031002. Epub 2012 Feb 3.

Feature-by-feature--evaluating de novo sequence assembly.

Author information

  • 1Department of Mathematics and Informatics, University of Udine, Udine, Italy.

Abstract

The whole-genome sequence assembly (WGSA) problem is among one of the most studied problems in computational biology. Despite the availability of a plethora of tools (i.e., assemblers), all claiming to have solved the WGSA problem, little has been done to systematically compare their accuracy and power. Traditional methods rely on standard metrics and read simulation: while on the one hand, metrics like N50 and number of contigs focus only on size without proportionately emphasizing the information about the correctness of the assembly, comparisons performed on simulated dataset, on the other hand, can be highly biased by the non-realistic assumptions in the underlying read generator. Recently the Feature Response Curve (FRC) method was proposed to assess the overall assembly quality and correctness: FRC transparently captures the trade-offs between contigs' quality against their sizes. Nevertheless, the relationship among the different features and their relative importance remains unknown. In particular, FRC cannot account for the correlation among the different features. We analyzed the correlation among different features in order to better describe their relationships and their importance in gauging assembly quality and correctness. In particular, using multivariate techniques like principal and independent component analysis we were able to estimate the "excess-dimensionality" of the feature space. Moreover, principal component analysis allowed us to show how poorly the acclaimed N50 metric describes the assembly quality. Applying independent component analysis we identified a subset of features that better describe the assemblers performances. We demonstrated that by focusing on a reduced set of highly informative features we can use the FRC curve to better describe and compare the performances of different assemblers. Moreover, as a by-product of our analysis, we discovered how often evaluation based on simulated data, obtained with state of the art simulators, lead to not-so-realistic results.

PMID:
22319599
[PubMed - indexed for MEDLINE]
PMCID:
PMC3272011
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk