Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mech Dev. 2012 Jan-Feb;128(11-12):525-35. doi: 10.1016/j.mod.2012.01.005. Epub 2012 Jan 31.

Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver.

Author information

  • 1Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Institute for Regeneration Medicine, Diabetes Center and Liver Center, University of California, San Francisco, CA 94158, USA. donghuns@pitt.edu

Abstract

Zebrafish wnt2bb mutants initially fail to form a liver, but surprisingly the liver eventually forms in a majority of these embryos which then develop into fertile adults. This unexpected result raised the possibility that identifying the mechanisms of liver formation in wnt2bb mutants could provide insights into the poorly understood yet general principle of regulative development, a process by which some cells can change fate in order to compensate for a deficiency. Here, we identify two factors that underlie the regulative capacity of endodermal tissues: an intrinsic factor, Sox32, a transcription factor of the SoxF subfamily, and an extrinsic factor, Fgf10a. sox32 is expressed in the extrahepatic duct primordium which is not affected in wnt2bb mutants. Blocking Sox32 function prevented liver formation in most wnt2bb mutants. fgf10a, which is expressed in the mesenchyme surrounding non-hepatic endodermal cells, negatively impacts the regulative capacity of endodermal tissues. In Wnt/β-catenin signaling deficient embryos, in which the liver completely fails to form, the repression of Fgf10a function allowed liver formation. Altogether, these studies reveal that there is more than one way to form a liver, and provide molecular insights into the phenomenon of tissue plasticity.

Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

PMID:
22313811
[PubMed - indexed for MEDLINE]
PMCID:
PMC3297115
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk