Format

Send to:

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2012 Jun 21;12(12):2229-39. doi: 10.1039/c2lc21113k. Epub 2012 Feb 6.

Oil-sealed femtoliter fiber-optic arrays for single molecule analysis.

Author information

  • 1Department of Chemistry, Tufts University, Medford, Massachusetts, USA.

Abstract

This paper describes a novel method for fabricating and sealing high-density arrays of femtoliter reaction chambers. We chemically etch one end of a 2.3 mm diameter glass optical fiber bundle to create an array of microwells. We then use a contact printing method to selectively modify the surface of the material between microwells with a hydrophobic silane. This modification makes it possible to fill the wells with aqueous solution and then seal them with a droplet of oil, forming an array of isolated reaction chambers. Individual β-galactosidase molecules trapped in these reaction chambers convert a substrate into a fluorescent product that can be readily detected because a high local concentration of product is achieved. This binary readout can be used for ultra-sensitive measurements of enzyme concentration. We observed that the percentage of wells showing enzyme activity was linearly dependent on the concentration of soluble β-galactosidase in the picomolar range. A similar response was also observed for streptavidin-β-galactosidase captured by biotinylated beads. These arrays are also suitable for performing single-molecule kinetics studies on hundreds to thousands of enzyme molecules simultaneously. We observed a broad distribution of catalytic rates for individual β-galactosidase molecules trapped in the microwells, in agreement with previous studies using similar arrays that were mechanically sealed. We have further demonstrated that this femtoliter fiber-optic array can be integrated into a PDMS microfluidic channel system and sealed with oil on-chip, creating an easy to use and high-throughput device for single-molecule analysis.

PMID:
22311152
[PubMed - indexed for MEDLINE]
PMCID:
PMC3419529
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry Icon for PubMed Central
    Loading ...
    Write to the Help Desk