Send to

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2012 Apr 1;318(6):716-22. doi: 10.1016/j.yexcr.2012.01.020. Epub 2012 Jan 28.

Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin α(v)β(6)-dependent physical force.

Author information

  • 1Lung Biology Center, Department of Medicine, University of California, San Francisco, CA, USA.


Transforming Growth Factor Beta (TGF-β) is involved in regulating many biological processes and disease states. Cells secrete cytokine as a latent complex that must be activated for it to exert its biological functions. We previously discovered that the epithelial-restricted integrin α(v)β(6) activates TGF-β and that this process is important in a number of in vivo models of disease. Here, we show that agonists of G-protein coupled receptors (Sphingosine-1-Phosphate and Lysophosphatidic Acid) which are ligated under conditions of epithelial injury directly stimulate primary airway epithelial cells to activate latent TGF-β through a pathway that involves Rho Kinase, non-muscle myosin, the α(v)β(6) integrin, and the generation of mechanical tension. Interestingly, lung epithelial cells appear to exert force on latent TGF-β using sub-cortical actin/myosin rather than the stress fibers utilized by fibroblasts and other traditionally "contractile" cells. These findings extend recent evidence suggesting TGF-β can be activated by integrin-mediated mechanical force and suggest that this mechanism is important for an integrin (α(v)β(6)) and a cell type (epithelial cells) that have important roles in biologically relevant TGF-β activation in vivo.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk