Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Nutr. 2012 Mar;142(3):427-31. doi: 10.3945/jn.111.154245. Epub 2012 Feb 1.

Vision changes after spaceflight are related to alterations in folate- and vitamin B-12-dependent one-carbon metabolism.

Author information

  • 1Division of Space Life Sciences, Universities Space Research Association, Houston, TX, USA.

Abstract

Approximately 20% (7 of 38) of astronauts on International Space Station (ISS) missions have developed measurable ophthalmic changes after flight. This study was conducted to determine if the folate- and vitamin B-12-dependent 1-carbon metabolic pathway is altered in these individuals. Since 2006, we have conducted experiments on the ISS to evaluate nutritional status and related biochemical indices of astronauts before, during, and after flight. Data were modeled to evaluate differences between individuals with ophthalmic changes (n = 5) and those without them (n = 15), all of whom were on ISS missions of 48-215 d. We also determined whether mean preflight serum concentrations of the 1-carbon metabolites and changes in measured cycloplegic refraction after flight were associated. Serum homocysteine (Hcy), cystathionine, 2-methylcitric acid (2MCA), and methylmalonic acid concentrations were 25-45% higher (P < 0.001) in astronauts with ophthalmic changes than in those without them. These differences existed before, during, and after flight. Preflight serum concentrations of Hcy and cystathionine, and mean in-flight serum folate, were correlated with change (postflight relative to preflight) values in refraction (P < 0.05), and preflight serum concentrations of 2MCA tended to be associated (P = 0.06) with ophthalmic changes. The biochemical differences observed in crewmembers with vision issues strongly suggest that their folate- and vitamin B-12-dependent 1-carbon transfer metabolism was affected before and during flight. The consistent differences in markers of 1-carbon metabolism between those who did and those who did not develop changes in vision suggest that polymorphisms in enzymes of this pathway may interact with microgravity to cause these pathophysiologic changes.

PMID:
22298570
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk