Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2012 Apr;33(11):3187-94. doi: 10.1016/j.biomaterials.2012.01.028. Epub 2012 Jan 26.

Mechanisms underlying the synergistic enhancement of self-assembled neocartilage treated with chondroitinase-ABC and TGF-β1.

Author information

  • 1Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616, USA.

Abstract

Developing a platform for in vitro cartilage formation would enhance the study of cartilage development, pathogenesis, and regeneration. To improve neocartilage formation, our group developed a novel self-assembly process for articular chondrocytes, which has been improved in this study using a novel combination of catabolic and anabolic agents. TGF-β1 was applied in conjunction with the enzyme chondroitinase-ABC (C-ABC) to additively increase tensile properties and synergistically enhance collagen content. Additionally, microarray analysis indicated that TGF-β1 up-regulated MAPK signaling in contrast to C-ABC, which did not enrich genetic pathways. The lack of genetic signaling spurred investigation of the biophysical role of C-ABC, which showed that C-ABC treatment increased collagen fibril diameter and density. After four weeks of culture in nude mice, neocartilage exhibited stability and maturation. This study illustrated an innovative strategy for improving in vitro and in vivo articular cartilage formation and elucidated mechanisms underlying TGF-β1 and C-ABC treatment.

Copyright © 2012 Elsevier Ltd. All rights reserved.

PMID:
22284584
[PubMed - indexed for MEDLINE]
PMCID:
PMC3275670
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk