Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2012 Feb 15;134(6):2844-7. doi: 10.1021/ja206713a. Epub 2012 Feb 1.

Δ(11,12) double bond formation in tirandamycin biosynthesis is atypically catalyzed by TrdE, a glycoside hydrolase family enzyme.

Author information

  • 1CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.


The tirandamycins (TAMs) are a small group of Streptomyces-derived natural products that target bacterial RNA polymerase. Within the TAM biosynthetic cluster, trdE encodes a glycoside hydrolase whose role in TAM biosynthesis has been undefined until now. We report that in vivo trdE inactivation leads to accumulation of pre-tirandamycin, the earliest intermediate released from its mixed polyketide/nonribosomal peptide biosynthetic assembly line. In vitro and site-directed mutagenesis studies showed that TrdE, a putative glycoside hydrolase, catalyzes in a highly atypical fashion the installation of the Δ(11,12) double bond during TAM biosynthesis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk