Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2012 May;107(9):2430-41. doi: 10.1152/jn.00615.2011. Epub 2012 Jan 25.

Determinants of synaptic strength vary across an axon arbor.

Author information

  • 1Department of Biology Graduate Group, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA.

Abstract

We used synaptophysin-pHluorin expressed in hippocampal neurons to address how functional properties of terminals, namely, evoked release, total vesicle pool size, and release fraction, vary spatially across individual axon arbors. Consistent with previous reports, over short arbor distances (≈ 100 μm), evoked release was spatially heterogeneous when terminals contacted different postsynaptic dendrites or neurons. Regardless of the postsynaptic configuration, the evoked release and total vesicle pool size spatially covaried, suggesting that the fraction of synaptic vesicles available for release (release fraction) was similar over short distances. Evoked release and total vesicle pool size were highly correlated with the amount of NMDA receptors and PSD-95 in postsynaptic specialization. However, when individual axons were followed over longer distances (several hundred micrometers), a significant increase in evoked release was observed distally that was associated with an increased release fraction in distal terminals. The increase in distal release fraction can be accounted for by changes in individual vesicle release probability as well as readily releasable pool size. Our results suggest that for a single axon arbor, presynaptic strength indicated by evoked release over short distances is correlated with heterogeneity in total vesicle pool size, whereas over longer distances presynaptic strength is correlated with the spatial modulation of release fraction. Thus the mechanisms that determine synaptic strength differ depending on spatial scale.

PMID:
22279193
[PubMed - indexed for MEDLINE]
PMCID:
PMC3362249
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk