Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Nutr. 2012 Mar;142(3):614S-625S. doi: 10.3945/jn.111.149633. Epub 2012 Jan 25.

(n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary?

Author information

  • 1Division of Cardiovascular Medicine and Channing Laboratory, Brigham and Women's Hospital, Boston, MA, USA. dmozaffa@hsph.harvard.edu

Abstract

Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially for DPA. Nonetheless, the present evidence suggests that EPA and DHA have both shared and complementary benefits. Based on current evidence, increasing consumption of either would be advantageous compared to little or no consumption. Focusing on their combined consumption remains most prudent given the potential for complementary effects and the existing more robust literature on cardiovascular benefits of their combined consumption as fish or fish oil for cardiovascular benefits.

PMID:
22279134
[PubMed - indexed for MEDLINE]
PMCID:
PMC3278271
Free PMC Article

Images from this publication.See all images (1)Free text

FIGURE 1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk