Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arthritis Rheum. 2012 Jul;64(7):2201-10. doi: 10.1002/art.34403.

Dual-specificity phosphatase 1-null mice exhibit spontaneous osteolytic disease and enhanced inflammatory osteolysis in experimental arthritis.

Author information

  • 1University of Oxford, Oxford, UK.

Abstract

OBJECTIVE:

Bone formation and destruction are usually tightly linked; however, in disorders such as rheumatoid arthritis, periodontal disease, and osteoporosis, elevated osteoclast activity leads to bone destruction. Osteoclast formation and activation are controlled by many signaling pathways, including p38 MAPK. Dual-specificity phosphatase 1 (DUSP-1) is a factor involved in the negative regulation of p38 MAPK. The purpose of this study was to examine the effect of Dusp1 deficiency on bone destruction.

METHODS:

Penetrance, onset, and severity of collagen-induced arthritis were recorded in DUSP-1+/+ and DUSP-1-/- mice. Bone destruction was assessed by histologic and micro-computed tomographic examination of the joints. The in vitro formation and activation of osteoclasts from DUSP-1+/+ and DUSP-1-/- precursors were assessed in the absence or presence of tumor necrosis factor (TNF).

RESULTS:

The formation and activation of osteoclasts in vitro in the presence of TNF were enhanced by Dusp1 gene disruption. DUSP-1-/- mice exhibited higher penetrance, earlier onset, and increased severity of experimental arthritis, accompanied by greater numbers of osteoclasts in inflamed joints and more extensive loss of bone. A DUSP-1-/- mouse colony of mixed genetic background also demonstrated striking spontaneous osteolytic destruction of distal phalanges.

CONCLUSION:

DUSP-1 is a critical regulator of osteoclast activity and limits bone destruction in an experimental model of rheumatoid arthritis. Defects in the expression or activity of DUSP1 in humans may correlate with a propensity to develop osteolytic lesions in arthritis.

Copyright © 2012 by the American College of Rheumatology.

PMID:
22275313
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk