Format

Send to:

Choose Destination
See comment in PubMed Commons below
ACS Nano. 2012 Feb 28;6(2):1557-64. doi: 10.1021/nn204530r. Epub 2012 Jan 30.

Modulating adaptive immune responses to peptide self-assemblies.

Author information

  • 1Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States.

Abstract

Self-assembling peptides and peptide derivatives have received significant interest for several biomedical applications, including tissue engineering, wound healing, cell delivery, drug delivery, and vaccines. This class of materials has exhibited significant variability in immunogenicity, with many peptides eliciting no detectable antibody responses but others eliciting very strong responses without any supplemental adjuvants. Presently, strategies for either avoiding strong antibody responses or specifically inducing them are not well-developed, even though they are critical for the use of these materials both within tissue engineering and within immunotherapies. Here, we investigated the molecular determinants and immunological mechanisms leading to the significant immunogenicity of the self-assembling peptide OVA-Q11, which has been shown previously to elicit strong antibody responses in mice. We show that these responses can last for at least a year. Using adoptive transfer experiments and T cell knockout models, we found that these strong antibody responses were T cell-dependent, suggesting a route for avoiding or ensuring immunogenicity. Indeed, by deleting amino acid regions in the peptide recognized by T cells, immunogenicity could be significantly diminished. Immunogenicity could also be attenuated by mutating key residues in the self-assembling domain, thus preventing fibrillization. A second self-assembling peptide, KFE8, was also nonimmunogenic, but nanofibers of OVA-KFE8 elicited strong antibody responses similar to OVA-Q11, indicating that the adjuvant action was not dependent on the specific self-assembling peptide sequence. These findings will facilitate the design of self-assembled peptide biomaterials, both for applications where immunogenicity is undesirable and where it is advantageous.

PMID:
22273009
[PubMed - indexed for MEDLINE]
PMCID:
PMC3289747
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk