Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
ACS Med Chem Lett. 2011 Nov 10;2(11):818-823.

CoA Adducts of 4-Oxo-4-Phenylbut-2-enoates: Inhibitors of MenB from the M. tuberculosis Menaquinone Biosynthesis Pathway.

Author information

  • 1Institute for Chemical biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400 USA.

Abstract

A high-throughput screen led to the discovery of 2-amino-4-oxo-4-phenylbutanoate inhibitors of the 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) from the menaquinone biosynthesis pathway in Mycobacterium tuberculosis. However, these compounds are unstable in solution and eliminate to form the corresponding 4-oxo-4-phenylbut-2-enoates that then react with CoA in situ to form nanomolar inhibitors of MenB. The potency of these compounds results from interaction of the CoA adduct carboxylate with the MenB oxyanion hole, a conserved structural motif in the crotonase superfamily. 4-Oxo-4-chlorophenylbutenoyl methyl ester has MICs of 0.6 and 1.5 μg/ml against replicating and nonreplicating M. tuberculosis, respectively, and it is proposed that the methyl ester penetrates the cell where it is hydrolyzed and reacts with CoA to generate the active antibacterial. The CoA adducts thus represent an important foundation for the development of novel MenB inhibitors, and suggest a general approach to the development of potent inhibitors of acyl-CoA binding enzymes.

PMID:
22267981
[PubMed]
PMCID:
PMC3259734
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk