Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Adv Drug Deliv Rev. 2012 Jan;64(1):95-109. doi: 10.1016/j.addr.2011.12.008. Epub 2011 Dec 21.

Improving the prediction of the brain disposition for orally administered drugs using BDDCS.

Author information

  • 1Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94143-0912, USA.

Abstract

In modeling blood-brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists.

Copyright © 2012 Elsevier B.V. All rights reserved.

PMID:
22261306
[PubMed - indexed for MEDLINE]
PMCID:
PMC3496430
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk