Display Settings:


Send to:

Choose Destination
Nat Struct Mol Biol. 2012 Jan 8;19(2):246-52. doi: 10.1038/nsmb.2212.

Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2.

Author information

  • 1Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, USA.


Homologous recombination facilitates accurate repair of DNA double-strand breaks (DSBs) during the S and G2 phases of the cell cycle by using intact sister chromatids as sequence templates. Homologous recombination capacity is maximized in S and G2 by cyclin-dependent kinase (CDK) phosphorylation of CtIP, which subsequently interacts with BRCA1 and the Mre11-Rad50-NBS1 (MRN) complex. Here we show that, in human and mouse, Mre11 controls these events through a direct interaction with CDK2 that is required for CtIP phosphorylation and BRCA1 interaction in normally dividing cells. CDK2 binds the C terminus of Mre11, which is absent in an inherited allele causing ataxia telangiectasia-like disorder. This newly uncovered role for Mre11 does not require ATM activation or nuclease activities. Therefore, functions of MRN are not restricted to DNA damage responses but include regulating homologous recombination capacity during the normal mammalian cell cycle.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk