Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell. 2011 Dec 23;147(7):1537-50. doi: 10.1016/j.cell.2011.11.055.

Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution.

Author information

  • 1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.

Erratum in

  • Cell. 2012 Oct 26;151(3):684-6.

Abstract

Thousands of long intervening noncoding RNAs (lincRNAs) have been identified in mammals. To better understand the evolution and functions of these enigmatic RNAs, we used chromatin marks, poly(A)-site mapping and RNA-Seq data to identify more than 550 distinct lincRNAs in zebrafish. Although these shared many characteristics with mammalian lincRNAs, only 29 had detectable sequence similarity with putative mammalian orthologs, typically restricted to a single short region of high conservation. Other lincRNAs had conserved genomic locations without detectable sequence conservation. Antisense reagents targeting conserved regions of two zebrafish lincRNAs caused developmental defects. Reagents targeting splice sites caused the same defects and were rescued by adding either the mature lincRNA or its human or mouse ortholog. Our study provides a roadmap for identification and analysis of lincRNAs in model organisms and shows that lincRNAs play crucial biological roles during embryonic development with functionality conserved despite limited sequence conservation.

Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:
22196729
[PubMed - indexed for MEDLINE]
PMCID:
PMC3376356
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk