Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2012 Feb 16;116(6):1621-31. doi: 10.1021/jp206981d. Epub 2012 Feb 6.

High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K.

Author information

  • 1Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91106, United States.


The Yaghi laboratory has developed porous covalent organic frameworks (COFs), COF102, COF103, and COF202, and metal-organic frameworks (MOFs), MOF177, MOF180, MOF200, MOF205, and MOF210, with ultrahigh porosity and outstanding H(2) storage properties at 77 K. Using grand canonical Monte Carlo (GCMC) simulations with our recently developed first principles based force field (FF) from accurate quantum mechanics (QM), we calculated the molecular hydrogen (H(2)) uptake at 298 K for these systems, including the uptake for Li-, Na-, and K-metalated systems. We report the total, delivery and excess amount in gravimetric and volumetric units for all these compounds. For the gravimetric delivery amount from 1 to 100 bar, we find that eleven of these compounds reach the 2010 DOE target of 4.5 wt % at 298 K. The best of these compounds are MOF200-Li (6.34) and MOF200-Na (5.94), both reaching the 2015 DOE target of 5.5 wt % at 298 K. Among the undoped systems, we find that MOF200 gives a delivery amount as high as 3.24 wt % while MOF210 gives 2.90 wt % both from 1 to 100 bar and 298 K. However, none of these compounds reach the volumetric 2010 DOE target of 28 g H(2)/L. The best volumetric performance is for COF102-Na (24.9), COF102-Li (23.8), COF103-Na (22.8), and COF103-Li (21.7), all using delivery g H(2)/L units for 1-100 bar. These are the highest volumetric molecular hydrogen uptakes for a porous material under these thermodynamic conditions. Thus, one can obtain outstanding H(2) uptakes with Li, Na, and K doping of simple frameworks constructed from simple, cheap organic linkers. We present suggestions for strategies for synthesis of alkali metal-doped MOFs or COFs.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk