Display Settings:

Format

Send to:

Choose Destination
Poult Sci. 2012 Jan;91(1):26-40. doi: 10.3382/ps.2011-01635.

Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: egg production systems.

Author information

  • 1School of Agriculture, Food, and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom. ilkka.leinonen@newcastle.ac.uk

Abstract

The aim of this study was to apply a life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of eggs produced in the 4 major hen-egg production systems in the United Kingdom: 1) cage, 2) barn, 3) free range, and 4) organic. The analysis was based on an approach that applied a structural model for the industry and mechanistic submodels for animal performance, crop production, and nutrient flows. Baseline feeds representative of those used by the UK egg production industry were used. Typical figures from the UK egg production industry, feed intake, mortality of birds, farm energy, and material use in different systems were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs and allow for comparisons between the systems. The number of birds required to produce 1,000 kg of eggs was highest in the organic and lowest in the cage system; similarly, the amount of feed consumed per bird was highest in the organic and lowest in the cage system. These general differences in productivity largely affected the differences in the environmental impacts between the systems. Feed production, processing, and transport caused greater impacts compared with those from any other component of production; that is, 54 to 75% of the primary energy use and 64 to 72% of the global warming potential of the systems. Electricity (used mainly for ventilation, automatic feeding, and lighting) had the second greatest impact in primary energy use (16-38%). Gas and oil (used mainly for heating in pullet rearing and incineration of dead layer birds) used 7 to 14% of the total primary energy. Manure had the greatest impact on the acidification and eutrophication potentials of the systems because of ammonia emissions that contributed to both of these potentials and nitrate leaching that only affected eutrophication potential. The LCA method allows for comparisons between systems and for the identification of hotspots of environmental impacts that could be subject to mitigation.

PMID:
22184425
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk