Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Rep. 2012 May;39(5):5589-98. doi: 10.1007/s11033-011-1363-4. Epub 2011 Dec 20.

Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus).

Author information

  • 1Faculty of Life Science and Bioengineering, Ningbo University, 315211, Zhejiang, People's Republic of China.

Abstract

KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5' untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3' UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.

PMID:
22183304
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk