Display Settings:

Format

Send to:

Choose Destination
Biomaterials. 2012 Mar;33(7):2145-53. doi: 10.1016/j.biomaterials.2011.11.076. Epub 2011 Dec 16.

Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism.

Author information

  • 1Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Abstract

Injected therapeutics, such as cells or biological molecules, may have enhanced efficiency when delivered within a scaffold carrier. Here, we describe a dual-component Dock-and-Lock (DnL) self-assembly mechanism that can be used to construct shear-thinning, self-healing, and injectable hydrogels. One component is derived from the RIIα subunit of cAMP-dependent kinase A and is engineered as a telechelic protein with end groups that dimerize (docking step). The second component is derived from the anchoring domain of A-kinase anchoring protein (AD) and is attached to multi-arm crosslinker polymers and binds to the docked proteins (locking step). When mixed, these two DnL components form robust physical hydrogels instantaneously and under physiological conditions. Mechanical properties and erosion rates of DnL gels can be tuned through the AD peptide sequence, the concentration and ratio of each component, and the number of peptides on the cross-linking polymer. DnL gels immediately self-recover after deformation, are resistant to yield at strains as high as 400%, and completely self-heal irrespective of prior mechanical disruption. Mesenchymal stem cells mixed in DnL gels and injected through a fine needle remain highly viable (>90%) during the encapsulation and delivery process, and encapsulated large molecules are released with profiles that correspond to gel erosion. Thus, we have used molecular engineering strategies to develop cytocompatible and injectable hydrogels that have the potential to support cell and drug therapies.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
22177842
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk