Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21223-8. doi: 10.1073/pnas.1117827108. Epub 2011 Dec 12.

Spontaneous generation of anchorless prions in transgenic mice.

Author information

  • 1Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143, USA.

Abstract

Some prion protein mutations create anchorless molecules that cause Gerstmann-Sträussler-Scheinker (GSS) disease. To model GSS, we generated transgenic mice expressing cellular prion protein (PrP(C)) lacking the glycosylphosphatidyl inositol (GPI) anchor, denoted PrP(ΔGPI). Mice overexpressing PrP(ΔGPI) developed a late-onset, spontaneous neurologic dysfunction characterized by widespread amyloid deposition in the brain and the presence of a short protease-resistant PrP fragment similar to those found in GSS patients. In Tg(PrP,ΔGPI) mice, disease onset could be accelerated either by inoculation with brain homogenate prepared from spontaneously ill animals or by coexpression of membrane-anchored, full-length PrP(C). In contrast, coexpression of N-terminally truncated PrP(Δ23-88) did not affect disease progression. Remarkably, disease from ill Tg(PrP,ΔGPI) mice transmitted to mice expressing wild-type PrP(C), indicating the spontaneous generation of prions.

PMID:
22160704
[PubMed - indexed for MEDLINE]
PMCID:
PMC3248514
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk