Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20982-7. doi: 10.1073/pnas.1111202108. Epub 2011 Dec 8.

Protein conformational dynamics in the mechanism of HIV-1 protease catalysis.

Author information

  • 1Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.

Abstract

We have used chemical protein synthesis and advanced physical methods to probe dynamics-function correlations for the HIV-1 protease, an enzyme that has received considerable attention as a target for the treatment of AIDS. Chemical synthesis was used to prepare a series of unique analogues of the HIV-1 protease in which the flexibility of the "flap" structures (residues 37-61 in each monomer of the homodimeric protein molecule) was systematically varied. These analogue enzymes were further studied by X-ray crystallography, NMR relaxation, and pulse-EPR methods, in conjunction with molecular dynamics simulations. We show that conformational isomerization in the flaps is correlated with structural reorganization of residues in the active site, and that it is preorganization of the active site that is a rate-limiting factor in catalysis.

PMID:
22158985
[PubMed - indexed for MEDLINE]
PMCID:
PMC3248522
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk