Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Bioinformatics. 2012 Jan 15;28(2):229-37. doi: 10.1093/bioinformatics/btr649. Epub 2011 Dec 6.

Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort.

Author information

  • 1Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA.

Abstract

MOTIVATION:

Recent advances in high-throughput genotyping and brain imaging techniques enable new approaches to study the influence of genetic variation on brain structures and functions. Traditional association studies typically employ independent and pairwise univariate analysis, which treats single nucleotide polymorphisms (SNPs) and quantitative traits (QTs) as isolated units and ignores important underlying interacting relationships between the units. New methods are proposed here to overcome this limitation.

RESULTS:

Taking into account the interlinked structure within and between SNPs and imaging QTs, we propose a novel Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) method to identify quantitative trait loci for multiple disease-relevant QTs and apply it to a study in mild cognitive impairment and Alzheimer's disease. Built upon regression analysis, our model uses a new form of regularization, group ℓ(2,1)-norm (G(2,1)-norm), to incorporate the biological group structures among SNPs induced from their genetic arrangement. The new G(2,1)-norm considers the regression coefficients of all the SNPs in each group with respect to all the QTs together and enforces sparsity at the group level. In addition, an ℓ(2,1)-norm regularization is utilized to couple feature selection across multiple tasks to make use of the shared underlying mechanism among different brain regions. The effectiveness of the proposed method is demonstrated by both clearly improved prediction performance in empirical evaluations and a compact set of selected SNP predictors relevant to the imaging QTs.

AVAILABILITY:

Software is publicly available at: http://ranger.uta.edu/%7eheng/imaging-genetics/.

PMID:
22155867
[PubMed - indexed for MEDLINE]
PMCID:
PMC3259438
Free PMC Article

Images from this publication.See all images (8)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk