Format

Send to:

Choose Destination
See comment in PubMed Commons below
Circulation. 2011 Dec 20;124(25):2892-902. doi: 10.1161/CIRCULATIONAHA.111.059253. Epub 2011 Dec 5.

Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection.

Author information

  • 1Medizinische Klinik und Poliklinik I, Munich Heart Alliance, Klinikum Grosshadern of the Ludwig Maximilians-University, Munich, Germany.

Abstract

BACKGROUND:

Excessive formation of reactive oxygen species contributes to tissue injury and functional deterioration after myocardial ischemia/reperfusion. Especially, mitochondrial reactive oxygen species are capable of opening the mitochondrial permeability transition pore, a harmful event in cardiac ischemia/reperfusion. Thioredoxins are key players in the cardiac defense against oxidative stress. Mutations in the mitochondrial thioredoxin reductase (thioredoxin reductase-2, Txnrd2) gene have been recently identified to cause dilated cardiomyopathy in patients. Here, we investigated whether mitochondrial thioredoxin reductase is protective against myocardial ischemia/reperfusion injury.

METHODS AND RESULTS:

In mice, α-MHC-restricted Cre-mediated Txnrd2 deficiency, induced by tamoxifen (Txnrd2-/-ic), aggravated systolic dysfunction and cardiomyocyte cell death after ischemia (90 minutes) and reperfusion (24 hours). Txnrd2-/-ic was accompanied by a loss of mitochondrial integrity and function, which was resolved on pretreatment with the reactive oxygen species scavenger N-acetylcysteine and the mitochondrial permeability transition pore blocker cyclosporin A. Likewise, Txnrd2 deletion in embryonic endothelial precursor cells and embryonic stem cell-derived cardiomyocytes, as well as introduction of Txnrd2-shRNA into adult HL-1 cardiomyocytes, increased cell death on hypoxia and reoxygenation, unless N-acetylcysteine was coadministered.

CONCLUSIONS:

We report that Txnrd2 exerts a crucial function during postischemic reperfusion via thiol regeneration. The efficacy of cyclosporin A in cardiac Txnrd2 deficiency may indicate a role for Txnrd2 in reducing mitochondrial reactive oxygen species, thereby preventing opening of the mitochondrial permeability transition pore.

PMID:
22144571
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk