Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
NMR Biomed. 2012 May;25(5):779-86. doi: 10.1002/nbm.1792. Epub 2011 Dec 2.

Comparison of relative cerebral blood flow maps using pseudo-continuous arterial spin labeling and single photon emission computed tomography.

Author information

  • 1University of Texas Southwestern Medical Center, Dallas, TX, USA.

Abstract

Pseudo-continuous arterial spin labeling (PCASL) MRI is a relatively new arterial spin labeling technique and has the potential to extend the cerebral blood flow (CBF) measurement to all tissue types, including white matter. However, the arterial transit time (δ(a)) for white matter is not well established and a limited number of reports using multi-delay methods have yielded inconsistent findings. In this study, we used a different approach and measured white matter δ(a) (mean ± standard deviation, 1541 ± 173  ms) by determining the arrival times of exogenous contrast agent in a bolus tracking experiment. The data also confirmed δ(a) of gray matter to be 912 ± 209  ms. In the second part of this study, we used these parameters in PCASL kinetic models and compared relative CBF (rCBF, with respect to the whole brain) maps with those measured using a single photon emission computed tomography (SPECT) technique. It was found that the use of tissue-specific δ(a) in the PCASL model was helpful in improving the correspondence between the two modalities. On a regional level, the gray/white matter CBF ratios were 2.47 ± 0.39 and 2.44 ± 0.18 for PCASL and SPECT, respectively. On a single-voxel level, the variance between the modalities was still considerable, with an average rCBF difference of 0.27.

Copyright © 2011 John Wiley & Sons, Ltd.

PMID:
22139764
[PubMed - indexed for MEDLINE]
PMCID:
PMC3298573
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk