Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucl Med Biol. 2012 Apr;39(3):315-23. doi: 10.1016/j.nucmedbio.2011.09.008. Epub 2011 Dec 1.

Fluorine-18 labeling of three novel D-peptides by conjugation with N-succinimidyl-4-[18F]fluorobenzoate and preliminary examination by postmortem whole-hemisphere human brain autoradiography.

Author information

  • 1Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska University Hospital, S-17176 Stockholm, Sweden. mahabuba.jahan@ki.se

Abstract

INTRODUCTION:

β-Amyloid (Aβ) plaques and neurofibrillary tangles are the main characteristics of Alzheimer's disease (AD). Positron emission tomography (PET), a high-resolution, sensitive, and noninvasive imaging technique, has been widely utilized in visualizing the localization of plaques and tangles and thereby distinguishing between AD and healthy controls. A small 12-mer D-enantiomeric peptide (amino acid sequence=QSHYRHISPAQV), denoted as D1, has high binding affinity to Aβ in vitro in the sub-micromolar range, and consequently, its radiolabeled analogues have a potential as radioligands for visualizing amyloid plaques in vivo by PET.

AIM:

The aims of the present work were to develop three different potent D1 derivative peptides labeled with fluorine-18 and to examine them in the AD and control postmortem human brain by autoradiography (ARG).

METHODS:

Three different D1 derivative peptides were radiolabeled with fluorine-18 ([(18)F]ACI-87, [(18)F]ACI-88, [(18)F]ACI-89) using the prosthetic group N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) and purified by high performance liquid chromatography (HPLC). Preliminary ARG measurements were performed in AD and control brains.

RESULTS:

The three fluorine-18-labeled d-peptides were obtained in a total synthesis time of 140 min with radiochemical purity higher than 98%. The specific radioactivities of the three different D1 derivative peptides were between 9 and 113 GBq/μmol. ARG demonstrated a higher radioligand uptake in the cortical gray matter and the hippocampus in the AD brain as compared to age-matched control brain.

CONCLUSIONS:

Fluorine-18 labeling of the three novel D1 derivative peptides using [(18)F]SFB was successfully accomplished. Higher contrast between AD and control brain slices demonstrates their potential applicability for further use in vivo by PET.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk