Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pflugers Arch. 2012 Mar;463(3):449-58. doi: 10.1007/s00424-011-1063-x. Epub 2011 Dec 3.

Participation of calbindin-D28K in nociception: results from calbindin-D28K knockout mice.

Author information

  • 1Instituto Teófilo Hernando, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.

Abstract

Since calbindin-D(28K) (CB-D(28K))-positive neurons have been related to nociceptive sensory processing, we have hypothesized that altered CB-D(28K) expression could alter nociceptive transmission. We have used +/+ and -/- knockout (KO) mice for CB-D(28k) in different behavioral models of pain and sensory responses at the caudalis subdivision of the trigeminal spinal nucleus in order to understand how this protein may participate in nociception. Behavioral responses to formalin injection in the hind paw or at the whisker pad or in the hind paw glutamate or i.p. acetic acid tests showed an increase of the pain threshold in CB-D(28k) -/- mice. KO mice showed a diminution of the inhibitory activity at Sp5C nucleus and a marked reduction of GABA content. Sp5C neurons from CB-D(28k) -/- mice did not change their spontaneous activity or tactile response after formalin injection in the whisker pad. In contrast, Sp5C neurons increased their spontaneous firing rate and tactile response after formalin injection in their receptive field in CB-D(28k) +/+ mice. The results of this study demonstrate the active role played by CB-D(28k) in nociceptive sensory transmission. The lack of this calcium binding protein, associated to deficient GABAergic neurotransmission, translates into dysfunction of sensory processing of nociceptive stimuli.

PMID:
22134771
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk