Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Stem Cells. 2012 Feb;30(2):161-8. doi: 10.1002/stem.793.

Status of genomic imprinting in epigenetically distinct pluripotent stem cells.

Author information

  • 1The Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, United Kingdom.

Abstract

Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.

Copyright © 2011 AlphaMed Press.

PMID:
22109880
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk