Send to

Choose Destination
See comment in PubMed Commons below
Int J Audiol. 2012 Feb;51(2):75-82. doi: 10.3109/14992027.2011.625984. Epub 2011 Nov 22.

Relationship between speech recognition in noise and sparseness.

Author information

  • 1Institute of Sound and Vibration Research, University of Southampton, Southampton, UK.



Established methods for predicting speech recognition in noise require knowledge of clean speech signals, placing limitations on their application. The study evaluates an alternative approach based on characteristics of noisy speech, specifically its sparseness as represented by the statistic kurtosis.


Experiments 1 and 2 involved acoustic analysis of vowel-consonant-vowel (VCV) syllables in babble noise, comparing kurtosis, glimpsing areas, and extended speech intelligibility index (ESII) of noisy speech signals with one another and with pre-existing speech recognition scores. Experiment 3 manipulated kurtosis of VCV syllables and investigated effects on speech recognition scores in normal-hearing listeners.


Pre-existing speech recognition data for Experiments 1 and 2; seven normal-hearing participants for Experiment 3.


Experiments 1 and 2 demonstrated that kurtosis calculated in the time-domain from noisy speech is highly correlated (r > 0.98) with established prediction models: glimpsing and ESII. All three measures predicted speech recognition scores well. The final experiment showed a clear monotonic relationship between speech recognition scores and kurtosis.


Speech recognition performance in noise is closely related to the sparseness (kurtosis) of the noisy speech signal, at least for the types of speech and noise used here and for listeners with normal hearing.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Write to the Help Desk