Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):415-26. doi: 10.1161/ATVBAHA.111.238899. Epub 2011 Nov 17.

NADPH oxidase 4 mediates monocyte priming and accelerated chemotaxis induced by metabolic stress.

Author information

  • 1Clinical Laboratory Sciences, School of Health Professions, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, MC 6246, San Antonio, TX 78229-3900, USA.

Abstract

OBJECTIVE:

Metabolic disorders increase monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis in mice. The goal of this study was to determine the molecular mechanisms responsible for the enhanced responsiveness of monocytes to chemoattractants induced by metabolic stress.

METHODS AND RESULTS:

Chronic exposure of monocytes to diabetic conditions induced by human LDL plus high D-glucose concentrations (LDL+HG) promoted NADPH Oxidase 4 (Nox4) expression, increased intracellular H(2)O(2) formation, stimulated protein S-glutathionylation, and increased chemotaxis in response to MCP-1, platelet-derived growth factor B, and RANTES. Both H(2)O(2) added exogenously and overexpression of Nox4 mimicked LDL+HG-induced monocyte priming, whereas Nox4 knockdown protected monocytes against metabolic stress-induced priming and accelerated chemotaxis. Exposure of monocytes to LDL+HG promoted the S-glutathionylation of actin, decreased the F-actin/G-actin ratio, and increased actin remodeling in response to MCP-1. Preventing LDL+HG-induced protein S-glutathionylation by overexpressing glutaredoxin 1 prevented monocyte priming and normalized monocyte chemotaxis in response to MCP-1. Induction of hypercholesterolemia and hyperglycemia in C57BL/6 mice promoted Nox4 expression and protein S-glutathionylation in macrophages, and increased macrophage recruitment into MCP-1-loaded Matrigel plugs implanted subcutaneous in these mice.

CONCLUSIONS:

By increasing actin-S-glutathionylation and remodeling, metabolic stress primes monocytes for chemoattractant-induced transmigration and recruitment to sites of vascular injury. This Nox4-dependent process provides a novel mechanism through which metabolic disorders promote atherogenesis.

PMID:
22095986
[PubMed - indexed for MEDLINE]
PMCID:
PMC3262086
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk