Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEMS Yeast Res. 2012 Feb;12(1):33-47. doi: 10.1111/j.1567-1364.2011.00760.x. Epub 2011 Dec 15.

Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae.

Author information

  • 1Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, Bloemfontein, South Africa.

Abstract

The physiological role and possible functional substitution of each of the five alcohol dehydrogenase (Adh) isozymes in Saccharomyces cerevisiae were investigated in five quadruple deletion mutants designated strains Q1-Q5, with the number indicating the sole intact ADH gene. Their growth in aerobic batch cultures was characterised in terms of kinetic and stoichiometric parameters. Cultivation with glucose or ethanol as carbon substrate revealed that Adh1 was the only alcohol dehydrogenase capable of efficiently catalysing the reduction of acetaldehyde to ethanol. The oxidation of produced or added ethanol could also be attributed to Adh1. Growth of strains lacking the ADH1 gene resulted in the production of glycerol as a major fermentation product, concomitant with the production of a significant amount of acetaldehyde. Strains Q2 and Q3, expressing only ADH2 or ADH3, respectively, produced ethanol from glucose, albeit less than strain Q1, and were also able to oxidise added ethanol. Strains Q4 and Q5 grew poorly on glucose and produced ethanol, but were neither able to utilise the produced ethanol nor grow on added ethanol. Transcription profiles of the ADH4 and ADH5 genes suggested that participation of these gene products in ethanol production from glucose was unlikely.

© 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

PMID:
22094012
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk