Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Clin Invest. 2011 Dec;121(12):4838-49. doi: 10.1172/JCI41769. Epub 2011 Nov 14.

Loss of nuclear pro-IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma.

Author information

  • 1Department of Dermatology, Cutaneous Oncology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

Abstract

Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin lymphomas that affect the skin. The pathogenesis of these conditions is poorly understood. For example, the signaling mechanisms contributing to the dysregulated growth of the neoplastic T cells are not well defined. Here, we demonstrate that loss of nuclear localization of pro-IL-16 facilitates CTCL cell proliferation by causing a decrease in expression of the cyclin dependent-kinase inhibitor p27Kip1. The decrease in p27Kip1 expression was directly attributable to an increase in expression of S-phase kinase-associated protein 2 (Skp2). Regulation of Skp2 is in part attributed to the nuclear presence of the scaffold protein pro-IL-16. T cells isolated from 11 patients with advanced CTCL, but not those from healthy controls or patients with T cell acute lymphocytic leukemia (T-ALL), demonstrated reduction in nuclear pro-IL-16 levels. Sequence analysis identified the presence of mutations in the 5' end of the PDZ1 region of pro-IL-16, a domain required for association of pro-IL-16 with the nuclear chaperone HSC70 (also known as HSPA8). HSC70 knockdown led to loss of nuclear translocation by pro-IL-16 and subsequent increases in Skp2 levels and decreases in p27Kip1 levels, which ultimately enhanced T cell proliferation. Thus, our data indicate that advanced CTCL cell growth is facilitated, at least in part, by mutations in the scaffold protein pro-IL-16, which directly regulates Skp2 synthesis.

PMID:
22080865
[PubMed - indexed for MEDLINE]
PMCID:
PMC3225985
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Write to the Help Desk