Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Photochem Photobiol B. 2012 Jan 5;106:40-6. doi: 10.1016/j.jphotobiol.2011.10.001. Epub 2011 Oct 19.

The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.

Author information

  • 1Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Department of Operative Dentistry, Rua Cap. Francisco Pedro, S/N, Rodolfo Teófilo, 60430-170 Fortaleza, CE, Brazil.

Abstract

Several photosensitizers have been used against oral bacteria without standardization. Singlet oxygen ((1)O(2)) is an aggressive chemical species that can kill cells through apoptosis or necrosis.

OBJECTIVE:

to compare the antimicrobial activity of photodynamic therapy (PDT) with different photosensitizers at the same concentration against Streptococcus mutans. In addition, the (1)O(2) production of each photosensitizer was determined. The photosensitizers (163.5 μM) methylene blue (MB), toluidine blue ortho (TBO) and malachite green (MG) were activated with a light-emitting diode (LED; λ=636 nm), while eosin (EOS), erythrosine (ERI) and rose bengal (RB) were irradiated with a curing light (λ=570 nm). Light sources were operated at 24 J cm(-2). For each photosensitizer, 40 randomized assays (n=10 per condition) were performed under one of the following experimental conditions: no light irradiation or photosensitizer, irradiation only, photosensitizer only or irradiation in the presence of a photosensitizer. After treatment, serial dilutions of S. mutans were seeded onto brain heart infusion agar to determine viability in colony-forming units per milliliter (CFU mL(-1)). Generation of (1)O(2) was analyzed by tryptophan photooxidation, and the decay constant was estimated. Results were analyzed by one-way ANOVA and the Tukey-Kramer test (p<0.05). PDT with irradiation in the presence of the photosensitizers TBO and MG was effective in reducing S. mutans counts by 3 and 1.4 logs, respectively (p<0.01), compared to their respective untreated controls. MB generated 1.3 times more (1)O(2) than TBO, and both produced significantly higher concentrations of singlet oxygen than the other photosensitizers. Since in vitro bulk (1)O(2) production does not indicate that (1)O(2) was generated in the bacterial activity site, the bactericidal action against S. mutans cannot be related to in vitro singlet O(2) generation rate. In vitroS. mutans-experiments demonstrated TBO as the only photosensitizer that effectively reduced 99.9% of these microorganisms.

Copyright © 2011 Elsevier B.V. All rights reserved.

PMID:
22070899
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk