Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neurobiol Dis. 2012 Feb;45(2):711-22. doi: 10.1016/j.nbd.2011.10.016. Epub 2011 Oct 25.

Synaptic dysfunction in progranulin-deficient mice.

Author information

  • 1Centre for Molecular Medicine & Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4.

Abstract

Progranulin haploinsufficiency is a common cause of familial frontotemporal dementia (FTD), but the role of progranulin in the brain is poorly understood. To investigate the role of murine progranulin (Grn) in the CNS in vivo, we generated mice targeted at the progranulin locus (Grn) using a gene-trap vector. Constitutive progranulin knockout mice (GrnKO) show moderate abnormalities in anxiety-related behaviors, social interactions, motor coordination, and novel object recognition at 8months of age, many of which differ between males and females. Analysis of synaptic transmission in 10-12 month old GrnKO male mice indicates altered synaptic connectivity and impaired synaptic plasticity. Additionally, apical dendrites in pyramidal cells in the CA1 region of the hippocampus in GrnKO males display an altered morphology and have significantly decreased spine density compared to wild-type (WT) mice. The observed changes in behavior, synaptic transmission, and neuronal morphology in GrnKO mice occur prior to neuropathological abnormalities, most of which are apparent at 18 but not at 8 months of age. We conclude that progranulin deficiency leads to reduced synaptic connectivity and impaired plasticity, which may contribute to FTD pathology in human patients.

Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:
22062772
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk