Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2011;6(10):e26823. doi: 10.1371/journal.pone.0026823. Epub 2011 Oct 27.

Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism.

Author information

  • 1Medicinal Chemistry, Cannabinoid and Endocannabinoid Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.

Abstract

The antitumoral properties of endocannabinoids received a particular attention these last few years. Indeed, these endogenous molecules have been reported to exert cytostatic, apoptotic and antiangiogenic effects in different tumor cell lines and tumor xenografts. Therefore, we investigated the cytotoxicity of three N-acylethanolamines--N-arachidonoylethanolamine (anandamide, AEA), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA)--which were all able to time- and dose-dependently reduce the viability of murine N1E-115 neuroblastoma cells. Moreover, several inhibitors of FAAH and NAAA, whose presence was confirmed by RT-PCR in the cell line, induced cell cytotoxicity and favored the decrease in cell viability caused by N-acylethanolamines. The most cytotoxic treatment was achieved by the co-incubation of AEA with the selective FAAH inhibitor URB597, which drastically reduced cell viability partly by inhibiting AEA hydrolysis and consequently increasing AEA levels. This combination of molecules synergistically decreased cell proliferation without inducing cell apoptosis or necrosis. We found that these effects are independent of cannabinoid, TRPV1, PPARα, PPARγ or GPR55 receptors activation but seem to occur through a lipid raft-dependent mechanism. These findings further highlight the interest of targeting the endocannabinoid system to treat cancer. More particularly, this emphasizes the great potential benefit of designing novel anti-cancerous therapies based on the association of endocannabinoids and inhibitors of their hydrolysis.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk