Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria

Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18542-7. doi: 10.1073/pnas.1107427108. Epub 2011 Oct 31.

Abstract

The colorful process of chromatic acclimation allows many cyanobacteria to change their pigmentation in response to ambient light color changes. In red light, cells produce red-absorbing phycocyanin (PC), whereas in green light, green-absorbing phycoerythrin (PE) is made. Controlling these pigment levels increases fitness by optimizing photosynthetic activity in different light color environments. The light color sensory system controlling PC expression is well understood, but PE regulation has not been resolved. In the filamentous cyanobacterium Fremyella diplosiphon UTEX 481, two systems control PE synthesis in response to light color. The first is the Rca pathway, a two-component system controlled by a phytochrome-class photoreceptor, which transcriptionally represses cpeCDESTR (cpeC) expression during growth in red light. The second is the Cgi pathway, which has not been characterized. We determined that the Cgi system also regulates PE synthesis by repressing cpeC expression in red light, but acts posttranscriptionally, requiring the region upstream of the CpeC translation start codon. cpeC RNA stability was comparable in F. diplosiphon cells grown in red and green light, and a short transcript that included the 5' region of cpeC was detected, suggesting that the Cgi system operates by transcription attenuation. The roles of four predicted stem-loop structures within the 5' region of cpeC RNA were analyzed. The putative stem-loop 31 nucleotides upstream of the translation start site was required for Cgi system function. Thus, the Cgi system appears to be a unique type of signal transduction pathway in which the attenuation of cpeC transcription is regulated by light color.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cyanobacteria / physiology*
  • Gene Expression Regulation, Bacterial*
  • Light*
  • Phycoerythrin / genetics*

Substances

  • Phycoerythrin