Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS Med. 2011 Oct;8(10):e1001110. doi: 10.1371/journal.pmed.1001110. Epub 2011 Oct 25.

Measuring the performance of vaccination programs using cross-sectional surveys: a likelihood framework and retrospective analysis.

Author information

  • 1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America. jlessler@jhsph.edu

Abstract

BACKGROUND:

The performance of routine and supplemental immunization activities is usually measured by the administrative method: dividing the number of doses distributed by the size of the target population. This method leads to coverage estimates that are sometimes impossible (e.g., vaccination of 102% of the target population), and are generally inconsistent with the proportion found to be vaccinated in Demographic and Health Surveys (DHS). We describe a method that estimates the fraction of the population accessible to vaccination activities, as well as within-campaign inefficiencies, thus providing a consistent estimate of vaccination coverage.

METHODS AND FINDINGS:

We developed a likelihood framework for estimating the effective coverage of vaccination programs using cross-sectional surveys of vaccine coverage combined with administrative data. We applied our method to measles vaccination in three African countries: Ghana, Madagascar, and Sierra Leone, using data from each country's most recent DHS survey and administrative coverage data reported to the World Health Organization. We estimate that 93% (95% CI: 91, 94) of the population in Ghana was ever covered by any measles vaccination activity, 77% (95% CI: 78, 81) in Madagascar, and 69% (95% CI: 67, 70) in Sierra Leone. "Within-activity" inefficiencies were estimated to be low in Ghana, and higher in Sierra Leone and Madagascar. Our model successfully fits age-specific vaccination coverage levels seen in DHS data, which differ markedly from those predicted by naïve extrapolation from country-reported and World Health Organization-adjusted vaccination coverage.

CONCLUSIONS:

Combining administrative data with survey data substantially improves estimates of vaccination coverage. Estimates of the inefficiency of past vaccination activities and the proportion not covered by any activity allow us to more accurately predict the results of future activities and provide insight into the ways in which vaccination programs are failing to meet their goals. Please see later in the article for the Editors' Summary.

PMID:
22039353
[PubMed - indexed for MEDLINE]
PMCID:
PMC3201935
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk