Send to

Choose Destination
See comment in PubMed Commons below
Anal Biochem. 2012 Feb 15;421(2):417-27. doi: 10.1016/j.ab.2011.09.015. Epub 2011 Sep 29.

Validation of surface plasmon resonance screening of a diverse chemical library for the discovery of protein tyrosine phosphatase 1b binders.

Author information

  • 1Biosensor Group, UMR 7242, CNRS-University of Strasbourg, 67412 Illkirch, France.


We investigated the suitability of surface plasmon resonance (SPR) for providing quantitative binding information from direct screening of a chemical library on protein tyrosine phosphatase 1b (PTP1B). The experimental design was established from simulations to detect binding with K(D) < 10⁻⁴ M. The 1120 compounds (cpds) were injected sequentially at concentrations [C(cpd)] of 0.5 or 10 μM over various target surfaces. An optimized evaluation procedure was applied. More than 90% of cpds showed no detectable signal in four screens. The 30 highest responders at C(cpd)=10 μM, of which 25 were selected in at least one of three screens at C(cpd)=0.5 μM, contained 22 promiscuous binders and 8 potential PTP1B-specific binders with K(D) ~10⁻⁵ M. Inhibition of PTP1B activity was assayed and confirmed for 6 of these, including sanguinarine, a known PTP1B inhibitor. C(cpd) dependence studies fully confirmed screening conclusions. The quantitative consistency of SPR data led us to propose a structure-activity relationship (SAR) model for developing selective PTP1B inhibitors based on the ranking of 10 arylbutylpiperidine analogs.

Copyright © 2011 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk