Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 2011 Dec 16;286(50):42830-9. doi: 10.1074/jbc.M111.300178. Epub 2011 Oct 24.

Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism.

Author information

  • 1Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Abstract

For optimal proteolytic function, the central core of the proteasome (core particle (CP) or 20S) has to associate with activators. We investigated the impact of the yeast activator Blm10 on proteasomal peptide and protein degradation. We found enhanced degradation of peptide substrates in the presence of Blm10 and demonstrated that Blm10 has the capacity to accelerate proteasomal turnover of the unstructured protein tau-441 in vitro. Mechanistically, proteasome activation requires the opening of a closed gate, which allows passage of unfolded proteins into the catalytic chamber. Our data indicate that gate opening by Blm10 is achieved via engagement of its C-terminal segment with the CP. Crucial for this activity is a conserved C-terminal YYX motif, with the penultimate tyrosine playing a preeminent role. Thus, Blm10 utilizes a gate opening strategy analogous to the proteasomal ATPases HbYX-dependent mechanism. Because gating incompetent Blm10 C-terminal point mutants confers a loss of function phenotype, we propose that the cellular function of Blm10 is based on CP association and activation to promote the degradation of proteasome substrates.

PMID:
22025621
[PubMed - indexed for MEDLINE]
PMCID:
PMC3234834
Free PMC Article

Images from this publication.See all images (6)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk