Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Biol Evol. 2011;3:1304-11. doi: 10.1093/gbe/evr107. Epub 2011 Oct 19.

CpG deamination creates transcription factor-binding sites with high efficiency.

Author information

  • 1Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany. zemojtel@molgen.mpg.de

Abstract

The formation of new transcription factor-binding sites (TFBSs) has a major impact on the evolution of gene regulatory networks. Clearly, single nucleotide mutations arising within genomic DNA can lead to the creation of TFBSs. Are molecular processes inducing single nucleotide mutations contributing equally to the creation of TFBSs? In the human genome, a spontaneous deamination of methylated cytosine in the context of CpG dinucleotides results in the creation of thymine (C → T), and this mutation has the highest rate among all base substitutions. CpG deamination has been ascribed a role in silencing of transposons and induction of variation in regional methylation. We have previously shown that CpG deamination created thousands of p53-binding sites within genomic sequences of Alu transposons. Interestingly, we have defined a ∼30 bp region in Alu sequence, which, depending on a pattern of CpG deamination, can be converted to functional p53-, PAX-6-, and Myc-binding sites. Here, we have studied single nucleotide mutational events leading to creation of TFBSs in promoters of human genes and in genomic regions bound by such key transcription factors as Oct4, NANOG, and c-Myc. We document that CpG deamination events can create TFBSs with much higher efficiency than other types of mutational events. Our findings add a new role to CpG methylation: We propose that deamination of methylated CpGs constitutes one of the evolutionary forces acting on mutational trajectories of TFBSs formation contributing to variability in gene regulation.

PMID:
22016335
[PubMed - indexed for MEDLINE]
PMCID:
PMC3228489
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk