Communication: partial polarization transfer for single-scan spectroscopy and imaging

J Chem Phys. 2011 Oct 14;135(14):141107. doi: 10.1063/1.3652965.

Abstract

A method is presented to partially transfer nuclear spin polarization from one isotope S to another isotope I by the way of heteronuclear spin couplings, while minimizing the loss of spin order to other degrees of freedom. The desired I spin polarization to be detected is a design parameter, while the sequence of pulses at the two Larmor frequencies is optimized to store the greatest unused S spin longitudinal polarization for subsequent use. The unitary evolution for the case of I(N)S spin systems illustrates the potentially ideal efficiency of this strategy, which is of particular interest when the spin-lattice relaxation time of S greatly exceeds that of I. Explicit timing and pulses are tabulated for the cases for which M ≤ 10 partial transfers each result in equal final polarization of 1/M or more compared to the final I polarization expected in a single transfer for N = 1, 2, or 3 I spins. Advantages for the ratiometric study of reacting molecules and hyperpolarized initial conditions are outlined.