Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
ASN Neuro. 2011;3(5):259-70. doi: 10.1042/AN20110015.

Increased expression of axogenesis-related genes and mossy fibre length in dentate granule cells from adult HuD overexpressor mice.

Author information

  • 1Departmemt of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA. nbizzozero@salud.unm.edu

Abstract

The neuronal RNA-binding protein HuD plays a critical role in the post-transcriptional regulation of short-lived mRNAs during the initial establishment and remodelling of neural connections. We have generated transgenic mice overexpressing this protein (HuD-Tg) in adult DGCs (dentate granule cells) and shown that their mossy fibres contain high levels of GAP-43 (growth-associated protein 43) and exhibit distinct morphological and electrophysiological properties. To investigate the basis for these changes and identify other molecular targets of HuD, DGCs from HuD-Tg and control mice were collected by LCM (laser capture microscopy) and RNAs analysed using DNA microarrays. Results show that 216 known mRNAs transcripts and 63 ESTs (expressed sequence tags) are significantly up-regulated in DGCs from these transgenic mice. Analyses of the 3'-UTRs (3'-untranslated regions) of these transcripts revealed an increased number of HuD-binding sites and the presence of several known instability-conferring sequences. Among these, the mRNA for TTR (transthyretin) shows the highest level of up-regulation, as confirmed by qRT-PCR (quantitative reverse transcription-PCR) and ISH (in situ hybridization). GO (gene ontology) analyses of up-regulated transcripts revealed a large over-representation of genes associated with neural development and axogenesis. In correlation with these gene expression changes, we found an increased length of the infrapyramidal mossy fibre bundle in HuD-Tg mice. These results support the notion that HuD stabilizes a number of developmentally regulated mRNAs in DGCs, resulting in increased axonal elongation.

PMID:
22004431
[PubMed - indexed for MEDLINE]
PMCID:
PMC3234101
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk