Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17550-5. doi: 10.1073/pnas.1113971108. Epub 2011 Oct 10.

Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass.

Author information

  • 1Plant Gene Expression Center/ US Department of Agriculture (USDA) and University of California (UC) Berkeley, Albany, CA 94710, USA. georgechuck@berkeley.edu

Erratum in

  • Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):995.

Abstract

Biofuels developed from biomass crops have the potential to supply a significant portion of our transportation fuel needs. To achieve this potential, however, it will be necessary to develop improved plant germplasm specifically tailored to serve as energy crops. Liquid transportation fuel can be created from the sugars locked inside plant cell walls. Unfortunately, these sugars are inherently resistant to hydrolytic release because they are contained in polysaccharides embedded in lignin. Overcoming this obstacle is a major objective toward developing sustainable bioenergy crop plants. The maize Corngrass1 (Cg1) gene encodes a microRNA that promotes juvenile cell wall identities and morphology. To test the hypothesis that juvenile biomass has superior qualities as a potential biofuel feedstock, the Cg1 gene was transferred into several other plants, including the bioenergy crop Panicum virgatum (switchgrass). Such plants were found to have up to 250% more starch, resulting in higher glucose release from saccharification assays with or without biomass pretreatment. In addition, a complete inhibition of flowering was observed in both greenhouse and field grown plants. These results point to the potential utility of this approach, both for the domestication of new biofuel crops, and for the limitation of transgene flow into native plant species.

PMID:
21987797
[PubMed - indexed for MEDLINE]
PMCID:
PMC3198312
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk