Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cancer Res. 2011 Dec;9(12):1632-43. doi: 10.1158/1541-7786.MCR-11-0327. Epub 2011 Oct 7.

αB-crystallin, an effector of unfolded protein response, confers anti-VEGF resistance to breast cancer via maintenance of intracrine VEGF in endothelial cells.

Author information

  • 1Department of Anatomy & Cell Biology, University of Florida, Gainesville, FL 32610, USA.

Abstract

Effective inhibition of angiogenesis targeting the tumor endothelial cells requires identification of key cellular and molecular mechanisms associated with survival of vasculatures within the tumor microenvironment. Intracellular autocrine (intracrine) VEGF production by endothelial cells plays a critical role on the vasculature homeostasis. In vitro breast cancer cell-stimulated activation of the unfolded protein response (UPR) of the endothelial cells contributes to maintenance of the intracrine VEGF levels in the endothelial cells through the upregulation of a previous undescribed downstream effector- αB-crystallin (CRYAB). siRNA-mediated knockdown of two major UPR proteins-inositol requiring kinase 1 and ATF6, led to attenuated CRYAB expression of the endothelial cells. Finally, inhibition of CRYAB blocked the breast cancer cell-stimulated increase in the endogenous VEGF levels of the endothelial cells. A VEGF limited proteolysis assay further revealed that CRYAB protected VEGF for proteolytic degradation. Here, we report that the molecular chaperone-CRYAB was significantly increased and colocalized with tumor vessels in a breast cancer xenograft. Specifically, neutralization of VEGF induced higher levels of CRYAB expression in the endothelial cells cocultured with MDA-MB-231 or the breast cancer xenograft with a significant survival benefit. However, knockdown of CRYAB had a greater inhibitory effect on endothelial survival. These findings underscore the importance of defining a role for intracrine VEGF signaling in sustaining aberrant tumor angiogenesis and strongly implicate UPR/CRYAB as dichotomous parts of a crucial regulation pathway for maintaining intracrine VEGF signaling.

PMID:
21984182
[PubMed - indexed for MEDLINE]
PMCID:
PMC3652269
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk