Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2012 Jan 15;21(2):300-10. doi: 10.1093/hmg/ddr459. Epub 2011 Oct 6.

Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53.

Author information

  • 1Genomic Medicine Institute, Lerner Research Institute, Howard Hughes Medical Institute Doctoral Program in Molecular Medicine, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA.

Abstract

Cowden syndrome (CS), a Mendelian autosomal-dominant disorder, predisposes to breast, thyroid and other cancers. Germline mutations in phosphatase and tensin homolog (PTEN) have been recently reported in 23% of a large series of classic CS. Here, we validated our small (n = 10) pilot study in a large patient series that germline variations in succinate dehydrogenase genes (SDHx) occur in 8% (49/608) of PTEN mutation-negative CS and CS-like (CSL) individuals (SDH(var+)). None of these SDHx variants was found in 700 population controls (P < 0.0001). We then found that SDHx variants also occur in 6% (26/444) of PTEN mutation-positive (PTEN(mut+)) CS/CSL individuals (PTEN(mut+)/SDH(var+)). Of 22 PTEN(mut+)/SDH(var+) females, 17 had breast cancers compared with 34/105 PTEN(mut+) (P < 0.001) or 27/47 SDH(var+) patients (P = 0.06). Notably, individuals with SDH(var+) alone had the highest thyroid cancer prevalence (24/47) compared with PTEN(mut+) patients (27/105, P = 0.002) or PTEN(mut+)/SDH(var+) carriers (6/22, P = 0.038). Patient-derived SDH(var+) lymphoblastoid cells had elevated cellular reactive oxygen species, highest in PTEN(mut+)/SDH(var+) cells, correlating with apoptosis resistance. SDH(var+) cells showed stabilized and hyperactivated hypoxia inducible factor (HIF)1α signaling. Most interestingly, we also observed the loss of steady-state p53 in the majority of SDH(var+) cells. This loss of p53 was regulated by MDM2-independent NADH quinone oxidoreductase 1-mediated protein degradation, likely due to the imbalance of flavin adenine dinucleotide/nicotinamide adenine dinucleotide in SDH(var+) cells. Our data suggest the potential regulation of HIF1α, p53 and PTEN signaling by mitochondrial metabolism in CS/CSL tumorigenesis. Together, our findings suggest the importance of considering SDHx as candidate predisposing and modifier genes for CS/CSL-related malignancy risks, and a mechanism which suggests ways of therapeutic reversal or prevention.

© The Author 2011. Published by Oxford University Press. All rights reserved.

PMID:
21979946
[PubMed - indexed for MEDLINE]
PMCID:
PMC3276278
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk