Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2011 Nov 18;414(1):145-62. doi: 10.1016/j.jmb.2011.09.023. Epub 2011 Sep 28.

Conservation of lipid functions in cytochrome bc complexes.

Author information

  • 1Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.

Abstract

Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b(6)f and bc(1) complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b(6)f complex with those in bc(1) shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b(6)f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc(1) complex. The specific identity of lipids is different in b(6)f and bc(1) complexes: b(6)f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc(1) complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b(6)f, as well as eicosane in C. reinhardtii, are unique to the b(6)f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b(6)f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
21978667
[PubMed - indexed for MEDLINE]
PMCID:
PMC3215850
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk