Display Settings:


Send to:

Choose Destination
Immunology. 2011 Nov;134(3):235-45. doi: 10.1111/j.1365-2567.2011.03483.x.

Helper T-cell differentiation and plasticity: insights from epigenetics.

Author information

  • 1Department of Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1930, USA. hiraharak@mail.nih.gov


CD4(+) T cells have critical roles in orchestrating immune responses to diverse microbial pathogens. This is accomplished through the differentiation of CD4(+) T helper cells to specialized subsets in response to microbial pathogens, which evoke a distinct cytokine milieu. Signal transducer and activator of transcription family transcription factors sense these cytokines and they in turn regulate expression of lineage-defining master regulators that programme selective gene expression, resulting in distinctive phenotypes. However, phenotype and restricted gene expression are determined not only by the action of transcription factors; chromatin accessibility is required for these factors to exert their effect. Technical advances have greatly expanded our understanding of transcription factor action and dynamic changes in the epigenome that accompany cellular differentiation. In this review, we will discuss recent progress in the understanding of how cytokines influence gene expression and epigenetic modifications, and the impact of these findings on our views of helper cell lineage commitment and plasticity.

Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk